- Mengaplikasikan LM336z pada sebuah rangkaian elektronik
ALAT
- Instrument
- Generator
Baterai
Di mulai dari pengertiannya. Baterai merupakan sebuah benda yang dapat atau bisa mengubah energi kimia menjadi energi listrik. Energi listrik yang dihasilkan oleh baterai tersebut sama seperti accumulator, yakni listrik searah dikatakan DC. Jumlah listrik yang dihasilkan tersebut tergantung dari seberapa besar baterai tersebut.
Baterai |
Fungsi Baterai:
Sangat beragam fungsi dari baterai dalam kehidupan sehari-hari namun memiliki intinya yang sama yakni sebagai sumber energi, karena hampir pada semua alat elektronik yang sifatnya mobile juga perlu baterai sebagai sumber energi. Sebut misalnya seperti HP, senter, power bank, drone, remote TV dan AC, dan lain sebagainya. Semua alat-alat tersebut membutuhkan baterai agar bisa bekerja.
Spesifikasi :
Komponen
1. RESISTOR
Resistor Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika. Rumus hukum ohm (V=IR) |
2. DIODA
Fungsi Utama dari dioda adalah penyarah arus.
3. TRANSISTOR
Transistor merupakan salah satu Komponen Elektronika Aktif yang paling sering digunakan dalam rangkaian Elektronika, baik rangkaian Elektronika yang paling sederhana maupun rangkaian Elektronika yang rumit dan kompleks. Transistor pada umumnya terbuat dari bahan semikonduktor seperti Germanium, Silikon, dan Gallium Arsenide.
Transistor NPN |
4. OP AMP
Op-Amp (Operational Amplifier) adalah salah satu bentuk IC Linear yang berfungsi sebagai Penguat Sinyal Listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan kapasitor yang terinterkoneksi dan terintegrasi. Sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas.
Op-Amp Spesifikasi : Pinout : |
5. KOMPONEN INPUT
Sensor Ir Proximity
Sensor infrared yang dapat mendeteksi Halangan, warna dan juga gerakan
Grafik Sensor IR ProximitySpesifikasi
- Catu daya: 3.3V
- Jarak deteksi: 10-20cm
- Active High Digital Output (+5V)
- Ambient Light & RGB Color Sensing
- Proximity Sensing
- Gesture Detection
Sensor Pir
Sensor PIR atau Passive Infra Red adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu objek.
Grafik Sensor PIR
Grafik Sensor PIRKonfigurasiGambar berikut menunjukkan bagian-bagian dari sensor PIR yang perlu untuk diketahui
Logicstate Gerbang Logika (Logic Gates) adalah sebuah entitas untuk melakukan pengolahan input-input yang berupa bilangan biner (hanya terdapat 2 kode bilangan biner yaitu, angka 1 dan 0) dengan menggunakan Teori Matematika Boolean sehingga dihasilkan sebuah sinyal output yang dapat digunakan untuk proses berikutnya. 6. KOMPONEN OUTPUT LED Komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju.
RELAY Relay adalah komponen elektronika yang berupa sakelar atau switch elektrik yang dioperasikan menggunakan listrik. Relay disebut sebagai komponen electromechanical karena terdiri dari dua bagian MOTOR DC Motor Listrik DC atau DC Motor adalah suatu perangkat yang mengubah energi listrik menjadi energi kinetik atau gerakan (motion). Spesifikasi :
Pinout 7. Komponen Lainnya : |
1. Resistor
Resistor adalah komponen elektronika yang berfungsi untuk menghambat atau membatasi aliran listrik yang mengalir dalam suatu rangkain elektronika. Sebagaimana fungsi resistor yang sesuai namanya bersifat resistif dan termasuk salah satu komponen elektronika dalam kategori komponen pasif. Satuan atau nilai resistansi suatu resistor di sebut Ohm dan dilambangkan dengan simbol Omega (Ω). Sesuai hukum Ohm bahwa resistansi berbanding terbalik dengan jumlah arus yang mengalir melaluinya. Selain nilai resistansinya (Ohm) resistor juga memiliki nilai yang lain seperti nilai toleransi dan kapasitas daya yang mampu dilewatkannya. Semua nilai yang berkaitan dengan resistor tersebut penting untuk diketahui dalam perancangan suatu rangkaian elektronika oleh karena itu pabrikan resistor selalu mencantumkan dalam kemasan resistor tersebut.
Simbol Resistor Sebagai Berikut :
Resistor dalam suatu teori dan penulisan formula yang berhubungan dengan resistor disimbolkan dengan huruf “R”. Kemudian pada desain skema elektronika resistor tetap disimbolkan dengan huruf “R”, resistor variabel disimbolkan dengan huruf “VR” dan untuk resistorjenis potensiometer ada yang disimbolkan dengan huruf “VR” dan “POT”.
Menghitung Nilai Resistor
Nilai resistor dapat diketahui dengan kode warna dan kode huruf pada resistor. Resistor dengan nilai resistansi ditentukan dengan kode warna dapat ditemukan pada resistor tetap dengan kapasitas daya rendah, sedangkan nilai resistor yang ditentukan dengan kode huruf dapat ditemui pada resistor tetap daaya besar dan resistor variable.
Kode Warna Resistor
Cicin warna yang terdapat pada resistor terdiri dari 4 ring 5 dan 6 ring warna. Dari cicin warna yang terdapat dari suatu resistor tersebut memiliki arti dan nilai dimana nilai resistansi resistor dengan kode warna yaitu :
1. Masukkan angka langsung dari kode warna gelang pertama
2. Masukkan angka langsung dari kode warna gelang kedua
3. Masukkan angka langsung dari kode warna gelang ketiga
4. Masukkan jumlah nol dari warna gelang ke-4 atau pangkatkan angka tersebut dengan (10^n), merupakan nilai toleransi dari resistor.
Kode Huruf Resistor
Resistor dengan kode huruf dapat kita baca nilai resistansinya dengan mudah karenanilia resistansi dituliskan secara langsung. Pad umumnya resistor yang dituliskan dengan kode huruf memiliki urutan penulisan kapasitas daya, nilai resistansi dan toleransi resistor. Kode huruf digunakan untuk penulisan nilai resistansi dan toleransi resistor.
Kode Huruf Untuk Nilai Resistansi :
- R, berarti x1 (Ohm)
- K, berarti x1000 (KOhm)
- M, berarti x 1000000 (MOhm)
Kode Huruf Untuk Nilai Toleransi :
- F, untuk toleransi 1%
- G, untuk toleransi 2%
- J, untuk toleransi 5%
- K, untuk toleransi 10%
- M, untuk toleransi 20%
Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan
Mencari resistansi total dalam rangkaian dapat menggunakan :Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Seri : Rtotal = R1 + R2 + R3 + ….. + Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn
Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Dioda
Dioda atau disebut juga sinyal dioda adalah komponen dasar semikonduktor aktif yang hanya bisa mengalirkan arus satu arah saja (forward bias) yaitu dari arah positip (Anoda) ke arah negatif (Katoda) namun memblok arus untuk arah sebaliknya. Dalam rangkaian elektronika dioda diibaratkan sebagai kran/katup listrik satu arah. Dioda memiliki dua elektroda yaitu elektroda positip (Anoda) dan elektroda negatif (Katoda). Secara umum dioda biasa dipakai untuk merubah arus bolak-balik (AC) menjadi arus searah (DC) atau disebut sebagai Rectifier.
Dioda dibuat dari bahan semikonduktor seperti germanium (Ge), Silicon (Si) dan galium arsenide (GaAs), sifat listrik pada jenis material tersebut ialah menengah atau dengan kata lain tidak baik sebagai konduktor dan tidak baik juga sebagai insulator, sifat ini dinamakan semikonduktor.
Jenis dan Simbol Dioda
Seperti penjelasan diatas, Jenis dioda tergantung dari bahan material yang dipakai saat pembuatannya, dibawah ini adalah contoh gambar dan simbol dari jenis-jenis dioda:
1. Dioda Silicon Terbuat dari bahan Germanium, memiliki drop tegangan maju (forward volt drop) 0,7V, pada rangkaian elektronika biasa dipakai sebagai penyearah (rectifier). Contoh dioda Germanium adalah: 1N4000 series dan 1N5000 series dll.
2. Dioda Germanium Terbuat dari bahan Silicon, memiliki drop tegangan maju (forward volt drop) 0,3V. Biasa diaplikasikan sebagai dioda penyearah. contoh dioda silicon adalah: IN4148 atau 1N914 dll.
3. Dioda Zener Terbuat dari bahan silikon, dioda zener atau sering disebut juga "breakdown diode" berfungsi sebagai pembatas tegangan pada rangkaian, atau dengan kata lain dioda zener adalah komponen regulator tegangan sederhana. dioda zener memiliki rating tegangan antara 1 sampai ratusan volt dengan daya mulai dari 1/4w.
4. Light Emitting Diode atau LED Adalah jenis dioda yang dapat mengeluarkan cahaya, LED yang banyak dipasaran berbentuk kubah bulat dan juga kotak persegi dengan variasi warna merah, kuning, hijau, biru atau putih. batas arus maksimum LED adalah 20mA. dan memiliki drop tegangan maju (forward volt drop) antara 1,2v sampai 3,6v tergantung dari jenis warna LED.
5. Dioda Schottky disebut juga dioda power memiliki drop tegangan maju (forward bias) yang rendah, namun rating arus dan tegangannya tinggi. Biasa dipakai sebagai penyearah pada frekuensi tinggi, sering dipakai pada rangkaian pengisian battre, AC Rectifier dan Inverter.contoh untuk dioda schotky adalah 5819 atau 58xx dll.
1. Dioda Silicon
Cara Mengukur Dioda dengan Multimeter Analog
- Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100
- Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)
- Hubungkan Probe Hitam pada Terminal Anoda.
- Baca hasil Pengukuran di Display Multimeter
- Jarum pada Display Multimeter harus bergerak ke kanan
- Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).
- Baca hasil Pengukuran di Display Multimeter
- Jarum harus tidak bergerak.
**Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.
Transistor
- Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100
- Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)
- Hubungkan Probe Hitam pada Terminal Anoda.
- Baca hasil Pengukuran di Display Multimeter
- Jarum pada Display Multimeter harus bergerak ke kanan
- Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).
- Baca hasil Pengukuran di Display Multimeter
- Jarum harus tidak bergerak.
**Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.
Transistor NPN
Fungsi-fungsi Transistor diantaranya adalah :
- sebagai Penyearah,
- sebagai Penguat tegangan dan daya,
- sebagai Stabilisasi tegangan,
- sebagai Mixer,
- sebagai Osilator
- sebagai Switch (Pemutus dan Penyambung Sirkuit)
Lambang Transistor BJT
Sudah jelas seperti gambar di atas bahwa transistor PNP memiliki simbol yang arah panahnya masuk dan sebaliknya untuk NPN arah panah dari emiter mengarah keluar.
Bentuk aliran arus pada sebuah transistor dapat dirumuskan dengan hukum KCL ( Kirchoff Current Law) Atau hukum Kirchoff I, yang dirumuskan sebagai berikut.
Ie = Ic + Ib
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Ib = Arus Basis
Pada Transistor BJT nilai arus Ib relatif sangat kecil terhadap Ic, maka Ib ini dapat diabaikan. Sehingga persamaan diatas bisa berubah menjadi
Ie = Ic
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
- sebagai Penyearah,
- sebagai Penguat tegangan dan daya,
- sebagai Stabilisasi tegangan,
- sebagai Mixer,
- sebagai Osilator
- sebagai Switch (Pemutus dan Penyambung Sirkuit)
Ie = Ic + Ib
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Ib = Arus Basis
Keterangan :
Ie = Arus Emitter
Ic = Arus Collector
Karakteristik I/O
Bentuk gelombang I/O
Pada dasarnya, Transistor adalah Komponen Elektronika yang terdiri dari 3 Lapisan Semikonduktor dan memiliki 3 Terminal (kaki) yaitu Terminal Emitor yang disingkat dengan huruf “E”, Terminal Base (Basis) yang disingkat dengan huruf “B” serta Terminal Collector/Kolektor yang disingkat dengan huruf “C”. Berdasarkan strukturnya, Transistor sebenarnya merupakan gabungan dari sambungan 2 dioda. Dari gabungan tersebut , Transistor kemudian dibagi menjadi 2 tipe yaitu Transistor tipe NPN dan Transistor tipe PNP yang disebut juga dengan Transistor Bipolar. Dikatakan Bipolar karena memiliki 2 polaritas dalam membawa arus listrik.
NPN merupakan singkatan dari Negatif-Positif-Negatif sedangkan PNP adalah singkatan dari Positif-Negatif-Positif.
Berikut ini adalah gambar tipe Transistor berdasarkan Lapisan Semikonduktor yang membentuknya beserta simbol Transistor NPN dan PNP.
Pada dasarnya, Transistor adalah Komponen Elektronika yang terdiri dari 3 Lapisan Semikonduktor dan memiliki 3 Terminal (kaki) yaitu Terminal Emitor yang disingkat dengan huruf “E”, Terminal Base (Basis) yang disingkat dengan huruf “B” serta Terminal Collector/Kolektor yang disingkat dengan huruf “C”. Berdasarkan strukturnya, Transistor sebenarnya merupakan gabungan dari sambungan 2 dioda. Dari gabungan tersebut , Transistor kemudian dibagi menjadi 2 tipe yaitu Transistor tipe NPN dan Transistor tipe PNP yang disebut juga dengan Transistor Bipolar. Dikatakan Bipolar karena memiliki 2 polaritas dalam membawa arus listrik.
NPN merupakan singkatan dari Negatif-Positif-Negatif sedangkan PNP adalah singkatan dari Positif-Negatif-Positif.
Berikut ini adalah gambar tipe Transistor berdasarkan Lapisan Semikonduktor yang membentuknya beserta simbol Transistor NPN dan PNP.
PRINSIP KERJA TRANSISTOR
Prinsip kerja transistor PNP adalah arus mengalir dari emitor menuju kolektor. Dibandingkan NPN, pada PNP terjadi hal sebaliknya ketika arus mengalir pada kaki basis, maka transistor tidak bekerja. Arus akan mengalir apabila kaki basis diberi sambungan ke ground (-) hal ini akan menginduksi arus pada kaki emitor ke kolektor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari emitor ke kolektor. Penggunaan transistor jenis ini mulai jarang digunakan. Dibanding dengan NPN, transistor jenis PNP mulai sulit ditemukan dipasaran. Transistor jenis PNP adalah transistor negatif dimana akan dapat bekerja mengalirkan arus listrik jika basis dialiri arus negative (-) dan mempunyai lapisan semikonduktor sebagai berikut :- Pada Emitor = Semikonduktor yang dipakai adalah negatif.
- Pada Basis = Semikonduktor yang dipakai adalah positif.
- Pada Kolektor = Semikonduktor yang dipakai adalah negative.
Prinsip kerja transistor NPN adalah arus mengalir dari kolektor menuju emitor. Jika basis dihubungkan diberi tegangan maka arus basis harus lebih kecil dari arus yang mengalir dari kolektor ke emitor. Untuk mengalirkan arus tersebut dibutuhkan sambungan ke sumber positif (+) pada kaki basis. Ketika basis diberi tegangan, hingga dititik saturasi, maka akan menginduksi arus dari kaki kolektor ke emitor. Dan transistor akan aktif jika arus yang melalui basis berkurang, maka arus yang mengalir pada kolektor ke emitor akan berkurang, hingga titik cutoff. Penurunan ini sangatlah cepat karena perbandingan penguatan yang terjadi antara basis dan kolektor melebihi 200 kali. Transistor jenis NPN adalah transistor positif dimana akan dapat bekerja mengalirkan arus listrik jika basis dialiri arus positf (+) dan mempunyai lapisan semikonduktor sebagai berikut :- Pada Emitor = Semikonduktor yang dipakai adalah positif.
- Pada Basis = Semikonduktor yang dipakai adalah negatif.
- Pada Kolektor = Semikonduktor yang dipakai adalah positif
OP-AMP
Penguat operasional (Operational Amplifier) atau yang biasa disebut dengan op-amp, merupakan penguat elektronika yang banyak digunakan untuk membuat rangkaian detektor, komparator, penguat audio, video, pembangkit sinyal, multivibrator, filter, ADC, DAC, rangkaian penggerak dan berbagai macam rangkaian analog lainnya.
Op-amp pada umumnya tersedia dalam bentuk rangkaian terpadu yang memiliki karakteristik mendekati karakteristik penguat operasional ideal tanpa perlu memperhatikan apa yang terdapat di dalamnya.
Ada tiga karakteristik utama op-amp ideal, yaitu;
1. Gain sangat besar (AOL >>). Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga.
2. Impedansi input sangat besar (Zi >>). Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
3. Impedansi output sangat kecil (Zo <<). Impedansi output adalah sangat kecil sehingga tegangan output stabil karena tahanan beban lebih besar yang diparalelkan dengan Zo <<.
Simbol1. Op Amp Sebagai Penguat Non Inverting
Penguat Non Inverting adalah suatu rangkaian penguat yang berfungsi menguatkaan sinyal dan hasil sinyal yang dikuatkan tetap sefasa dengan sinyal inputannya, hasil dari sinyal input dan output rangkaian non inverting dapat dilihat pada Gambar 1. Pada dasarnya penguat non inverting digunakan sebagai pengkondisi sinyal inputan sensor yang terlalu kecil sehingga dibutuhkan penguatan untuk diproses. intinya penguat non inverting ke balikkan dari penguat inverting.
Gambar 1 Rangkaian Penguat Non Inverting
Keterangan GambarVin : Tegangan MasukanVout : Tegangan KeluaranRg : Resistansi ground Rf : Resistansi feedback
Gambar 2 Sinyal Input dan Output Penguat Non Inverting
Fungsi Penguat Non Inverting
Fungsi dari penguat non inverting kurang lebih sama dengan penguat inverting hanya saja polaritas output yang dihasilkan sama dengan sinyal inputnya. Keluaran sensor dan tranduser pada umumnya mempunyai tegangan yang sangat kecil hingga mikro volt, sehingga diperlukan penguat dengan impedansi masukan rendah. Rangkaian penguat non inverting akan menerima arus atau tegangan dari tranduser sangat kecil dan akan membangkitkan arus atau tegangan yang lebih besar
Rumus Op Amp Non Inverting
Gambar 3 Penjabaran Rangkaian Penguat Non Inverting untuk mempermudah penurunan rumus
Rumus mencari tegangan output yaitu:
Penguat operasional (Operational Amplifier) atau yang biasa disebut dengan op-amp, merupakan penguat elektronika yang banyak digunakan untuk membuat rangkaian detektor, komparator, penguat audio, video, pembangkit sinyal, multivibrator, filter, ADC, DAC, rangkaian penggerak dan berbagai macam rangkaian analog lainnya.
Op-amp pada umumnya tersedia dalam bentuk rangkaian terpadu yang memiliki karakteristik mendekati karakteristik penguat operasional ideal tanpa perlu memperhatikan apa yang terdapat di dalamnya.
Ada tiga karakteristik utama op-amp ideal, yaitu;
1. Gain sangat besar (AOL >>). Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga.
2. Impedansi input sangat besar (Zi >>). Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
3. Impedansi output sangat kecil (Zo <<). Impedansi output adalah sangat kecil sehingga tegangan output stabil karena tahanan beban lebih besar yang diparalelkan dengan Zo <<.
1. Op Amp Sebagai Penguat Non Inverting
Penguat Non Inverting adalah suatu rangkaian penguat yang berfungsi menguatkaan sinyal dan hasil sinyal yang dikuatkan tetap sefasa dengan sinyal inputannya, hasil dari sinyal input dan output rangkaian non inverting dapat dilihat pada Gambar 1. Pada dasarnya penguat non inverting digunakan sebagai pengkondisi sinyal inputan sensor yang terlalu kecil sehingga dibutuhkan penguatan untuk diproses. intinya penguat non inverting ke balikkan dari penguat inverting.
Fungsi dari penguat non inverting kurang lebih sama dengan penguat inverting hanya saja polaritas output yang dihasilkan sama dengan sinyal inputnya. Keluaran sensor dan tranduser pada umumnya mempunyai tegangan yang sangat kecil hingga mikro volt, sehingga diperlukan penguat dengan impedansi masukan rendah. Rangkaian penguat non inverting akan menerima arus atau tegangan dari tranduser sangat kecil dan akan membangkitkan arus atau tegangan yang lebih besar
Rumus Op Amp Non Inverting
Op-amp sebagai voltage follower
Op-Amp Voltage Follower (atau dikenal juga sebagai Unity-gain Amplifier atau Buffer Amplifier) adalah rangkaian Op-Amp yang memiliki penguatan atau gain (A) tegangan sebesar 1x. Dengan kata lain, Op-Amp tidak memberikan amplifikasi ataupun atenuasi terhadap sinyal inputnya. Yang artinya keluaran dari Op-Amp sama dengan masukannya.
Rangkaian Op-Amp Voltage Follower.
Cara Kerja Rangkaian Op-Amp Voltage Follower.
Sensor PIR
Sensor PIR atau Passive Infra Red adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu objek. Sensor PIR bersifat pasif, yang berarti sensor ini tidak memancarkan sinar infra merah melainkan hanya dapat menerima radiasi sinar infra merah dari luar. Sensor PIR dapat mendeteksi radiasi dari berbagai objek dan karena semua objek memancarkan energi radiasi, sebagai contoh ketika terdeteksi sebuah gerakan dari sumber infra merah dengan suhu tertentu yaitu manusia mencoba melewati sumber infra merah yang lain misal dinding, maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.
Sensor PIR
Sensor PIR merupakan sensor yang dapat mendeteksi pergerakan, dalam hal ini sensor PIR banyak digunakan untuk mengetahui apakah ada pergerakan manusia dalam daerah yang mampu dijangkau oleh sensor PIR. Sensor ini memiliki ukuran yang kecil, murah, hanya membutuhkan daya yang kecil, dan mudah untuk digunakan. Oleh sebab itu, sensor ini banyak digunakan pada skala rumah maupun bisnis. Sensor PIR ini sendiri merupakan kependekan dari “Passive InfraRed” sensor.
Sensor PIR atau Passive Infra Red adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah dari suatu objek. Sensor PIR bersifat pasif, yang berarti sensor ini tidak memancarkan sinar infra merah melainkan hanya dapat menerima radiasi sinar infra merah dari luar. Sensor PIR dapat mendeteksi radiasi dari berbagai objek dan karena semua objek memancarkan energi radiasi, sebagai contoh ketika terdeteksi sebuah gerakan dari sumber infra merah dengan suhu tertentu yaitu manusia mencoba melewati sumber infra merah yang lain misal dinding, maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.
Sensor PIR |
Cara Kerja PIR
Pada umumnya sensor PIR dibuat dengan sebuah sensor pyroelectric sensor (seperti yang terlihat pada gambar di samping) yang dapat mendeteksi tingkat radiasi infrared. Segala sesuatu mengeluarkan radiasi dalam jumlah sedikit, tapi semakin panas benda/makhluk tersebut maka tingkat radiasi yang dikeluarkan akan semakin besar. Sensor ini dibagi menjadi dua bagian agar dapat mendeteksi pergerakan bukan rata-rata dari tingkat infrared. Dua bagian ini terhubung satu sama lain sehingga jika keduanya mendeteksi tingkat infrared yang sama maka kondisinya akan LOW namun jika kedua bagian ini mendeteksi tingkat infrared yang berbeda (terdapat pergerakan) maka akan memiliki output HIGH dan LOW secara bergantian.
Berikut grafik kinerja sensor PIR
Logicstate yaitu pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.Karena hanya dua status logika, logika 1 dan logika 0, yang dimungkinkan, teknik aljabar Boolean dapat digunakan untuk menganalisis rangkaian digital yang melibatkan sinyal biner. Istilah logika positif diterapkan ke sirkuit di mana logika 1 ditetapkan ke level tegangan yang lebih tinggi; Dalam rangkaian logika negatif, logika 1 ditunjukkan dengan level tegangan yang lebih rendah.
Pada umumnya sensor PIR dibuat dengan sebuah sensor pyroelectric sensor (seperti yang terlihat pada gambar di samping) yang dapat mendeteksi tingkat radiasi infrared. Segala sesuatu mengeluarkan radiasi dalam jumlah sedikit, tapi semakin panas benda/makhluk tersebut maka tingkat radiasi yang dikeluarkan akan semakin besar. Sensor ini dibagi menjadi dua bagian agar dapat mendeteksi pergerakan bukan rata-rata dari tingkat infrared. Dua bagian ini terhubung satu sama lain sehingga jika keduanya mendeteksi tingkat infrared yang sama maka kondisinya akan LOW namun jika kedua bagian ini mendeteksi tingkat infrared yang berbeda (terdapat pergerakan) maka akan memiliki output HIGH dan LOW secara bergantian.
Logicstate yaitu pengertian logis, benar atau salah, dari sinyal biner yang diberikan. Sinyal biner adalah sinyal digital yang hanya memiliki dua nilai yang valid. Dalam istilah fisik, pengertian logis dari sinyal biner ditentukan oleh level tegangan atau nilai arus sinyal, dan ini pada gilirannya ditentukan oleh teknologi perangkat. Dalam sirkuit TTL, misalnya, keadaan sebenarnya diwakili oleh logika 1, kira-kira sama dengan +5 volt pada garis sinyal; logika 0 kira-kira 0 volt. Tingkat tegangan antara 0 dan +5 volt dianggap tidak ditentukan.Karena hanya dua status logika, logika 1 dan logika 0, yang dimungkinkan, teknik aljabar Boolean dapat digunakan untuk menganalisis rangkaian digital yang melibatkan sinyal biner. Istilah logika positif diterapkan ke sirkuit di mana logika 1 ditetapkan ke level tegangan yang lebih tinggi; Dalam rangkaian logika negatif, logika 1 ditunjukkan dengan level tegangan yang lebih rendah.
LED
Komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Komponen elektronika yang dapat memancarkan cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.
Motor DC
Seperti yang sudah dijelaskan sebelumnya bahwa motor terdiri atas 2 bagian utama yaitu stator dan motor. Pada stator terdapat lilitan (winding) atau magnet permanen, sedangkan rotor adalah bagian yang dialiri dengan sumber arus DC. Arus yang melalui medan magnet inilah yang menyebabkan rotor dapat berputar. Arah gaya elektromagnet yang ditimbulkan akibat medan magnet yang dilalui oleh arus dapat ditentukan dengan menggunakan kaidah tangan kanan.
Kaidah Tangan Kanan
Keuntungan utama motor DC adalah sebagai pengendali kecepatan, yang tidak mempengaruhi kualitas pasokan daya. Motor ini dapat dikendalikan dengan mengatur:• Tegangan dinamo : meningkatkan tegangan dinamo akan meningkatkan kecepatan• Arus medan : menurunkan arus medan akan meningkatkan kecepatan.
Kaidah Tangan Kanan |
Mekanisme Kerja Motor DC:
Mekanisme kerja untuk seluruh jenis motor secara umum samaArus listrik dalam medan magnet akan menimbulkan gaya.· Jika kawat yang membawa arus dibengkokkan menjadi sebuah lingkaran/loop, maka kedua sisi loop yaitu pada sudut kanan medan magnet akan mendapat gaya pada arah yang berlawanan.· Pasangan gaya menghasilkan torsi untuk memutar kumparan.· Motor- motor memiliki beberapa loop pada dinamonya untuk memberikan tenaga putar yang lebih seragam dari medan magnetnya dihasilkan oleh susunan elektromagnetik yang disebut kumparan medan
Beberapa kerugian penggunaan motor DC:
-Perawatan intensif karena brush atau sikat pada motor DC akan aus.-Konversi arus AC menjadi arus DC menggunakan konverter memerlukan biaya yang mahal.
Keuntungan penggunaan motor DC:-Kecepatannya mudah diatur.
Perhitungan pada motor DC :
Daya input : Pin= √3 Vrms Irms cosƟ
Daya output : Pout= Tout w
w = kecepatan sudut
Tout = torsi output
Efisiensi : η (%) = (Pout/Pin) x 100
Mengapa terdapat efisiensi pada motor? Karena motor yang digunakan tidak dapat bersifat ideal, artinya pada motor ada kehilangan daya pada setiap prosesnya sehingga daya output akan bernilai lebih kecil daripada daya input. Kehilangan daya ini biasa disebut sebagai rugi-rugi daya dan dapat disebabkan karena mechanical (gesekan dan rotasi) serta electric (hambatan pada belitan).
Simbol motor listrik
Relay
Relay adalah komponen elektronika berupa sakelar elektronik yang digerakkan oleh arus listrik. Secara prinsip, relay merupakan tuas sakelar dengan lilitan kawat pada batang besi (solenoid) di dekatnya. Ketika solenoid dialiri arus listrik, tuas akan tertarik karena adanya gaya magnet yang terjadi pada solenoid sehingga kontak sakelar akan menutup. Pada saat arus hentikan, gaya magnet akan hilang, tuas akan kembali ke posisi semula dan kontak sakelar kembali terbuka. Relay biasanya digunakan untuk menggerakkan arus / tegangan yang besar (misalnya peralatan listrik 4 A / AC 220 V) dengan memakai arus / tegangan yang kecil (misalnya 0.1 A / 12 Volt DC).
Gambar Bentuk dan Simbol Relay
RANGKAIAN SIMULASI
PRINSIP KERJARangkaian Download
Tidak ada komentar:
Posting Komentar